德国TRUEBNERS  SMT100土壤温湿度传感器

SMT100德国TRUEBNERS SMT100土壤温湿度传感器

参考价: 面议

具体成交价以合同协议为准
2023-11-03 14:03:34
185
产品属性
关闭
北京博伦经纬科技发展有限公司

北京博伦经纬科技发展有限公司

免费会员
收藏

组合推荐相似产品

产品简介

德国TRUEBNERS SMT100土壤温湿度传感器

详细介绍

SMT100 土壤温湿度传感器 SMT100土壤温湿度传感器是德国TRUEBNERS公司生产的一款低成本、高质量传感器,其原理是利用环形振荡器将信号的传输时间转换为测量频率,产生的频率>100MHz足以在粘性土壤中正常工作。SMT100结合了低成本FDR传感器的优点和TDR传感器的精度。与TDR一样,它测量信号的传播时间,以确定土壤的介电常数,像FDR一样,它把介电常数转换成一个易于测量的频率。提供SDI-12、RS485、0-10V和Modbus多种输出方式,可满足广大客户的需求。

土壤温湿度传感器应用范围:
气象、农业、土壤、温室、植物秸秆水分测量、土壤侵蚀、堆肥水分测量、积雪水分温度测量、土木绿化、多元化灌溉等领域

土壤温湿度传感器技术指标:
水分范围:0-60% VWC (Max:99%VWC)
分辨率:0.1% VWC或者更高
精度:±3%VWC 工厂校准@在0-50%VWC矿物土盐分~8ds/m
±1%VWC@土壤特定校准

温度范围:-40~+80℃
分辨率:0.01℃
精度:典型±0.2℃@-20~+50℃; 其它±0.4℃

介电常数:1(空气)~80(水)
分辨率:0.01
响应时间:50us
供电:4-24V DC
电流:40mA
信号输出:数字:RS485、Modbus、SDI-12
模拟:0 - 10 V
线缆长度:10m
尺寸:18.2 cm x 3 cm x 1.2 cm

土壤温湿度传感器


Characteristics of the three types of soil moisture sensors used in the SOMOMOUNT network. All values in the table are provided by the manufacturers (Delta-T Devices, 2008; IMKO, 2015; Truebner, 2016).


Aragones, J. L., MacDowell, L. G., and Vega, C.: Di-electric Constant of Ices and Water: A Lesson about Water Interactions, J. Phys. Chem. A, 115, 5745–5758,
https://doi.org/10.1021/jp105975c, 2011.

Barthlott, C., Hauck, C., Schaedler, G., Kalthoff, N., and Kottmeier,C.: Soil moisture impacts on convective indices and pre- cipitation over complex terrain, Meteorol. Z., 20, 185–197,
https://doi.org/10.1127/0941-2948/2011/0216, 2011.

Beltrami, H.: Active layer distortion of annual air soil thermal orbits, Permafrost Periglac., 7, 101–110, https://doi.org/10.1002/(SICI)1099- 1530(199604)7:2<101::AID-PPP217>3.3.CO;2-3, 1996.

Beringer, J., Lynch, A. H., Chapin, F. S., Mack, M., and Bonan, G. B.: The Representation of Arctic Soils in
the Land Surface Model: The Importance of Mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520- 0442(2001)014<3324:TROASI>2.0.CO;2, 2001.

Bircher, S., Skou, N., Jensen, K. H., Walker, J. P., and Rasmussen, L.: A soil moisture and temperature network for SMOS valida- tion in Western Denmark, Hydrol. Earth Syst. Sci., 16, 1445– 1463, https://doi.org/10.5194/hess-16-1445-2012, 2012.

Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., and Vereecken, H.: Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability, Vadose Zone J., 9, 1002–1013, https://doi.org/10.2136/vzj2009.0173, 2010.

Bogena, H. R., Huisman, J. A., Schilling, B., Weuthen, A., and Vereecken, H.: Effective Calibration of Low-
Cost Soil Water Content Sensors, Sensors, 17, 208,
https://doi.org/10.3390/s, 2017.

Boike, J., Wille, C., and Abnizova, A.: Climatology and sum- mer energy and water balance of polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res-Biogeo., 113, G03025,
https://doi.org/10.1029/2007JG000540, 2008.

Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrom- eteorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps, J. Hydrometeorol., 8, 1049–1067,
https://doi.org/10.1175/JHM593.1, 2007.

Brocca, L., Morbidelli, R., Melone, F., and Moramarco, T.: Soil moisture spatial variability in experimen-
tal areas of central Italy, J. Hydrol., 333, 356–373,
https://doi.org/10.1016/j.jhydrol.2006.09.004, 2007.

上一篇:PM2.5传感器/检测仪监测原理
热线电话 在线询价
提示

请选择您要拨打的电话:

温馨提示

该企业已关闭在线交流功能